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Abstract. A suitable operator for the time-of-arrival at a detector is defined for the free
relativistic particle in(3+ 1) dimensions. For each detector position there exists a subspace of
detected states in the Hilbert space of solutions to the Klein—-Gordon equation. Orthogonality
and completeness of the eigenfunctions of the time-of-arrival operator apply inside this subspace,
opening up a standard probabilistic interpretation.

1. Introduction

In non-relativistic dynamics time has a characterization of its own which distinguishes it
sharply from the space coordinates of configuration space. However, this difference can be
simply removed at the formal level by going to the parametrized form of dynamics where
time is made to depend on a parametdén as much as the coordinatgsdo. One is thus

led to deal with a setg(t), t(r)) in which the identification of time against coordinates
appears more as a matter of convention than as a matter of significance from the point
of view of the dynamical system under study. Even so time still maintains a particular
role from the physical point of view. Time is experienced by the observer as well as by
the system. This is more evident in the transition to quantum mechanics, where time—as
opposed to position—cannot be viewed as a property of the system under scrutiny.

There is a way out of this situation as shown in [1], whose authors show how to deal
with and solve the questioat what timein quantum mechanics in one space dimension, by
introducing a suitable time operator and obtaining the associated time representation. The
outcome is the emergence ofca~ ¢ equivalence in quantum mechanics in much the same
way as there is one in classical mechanics. The questiovhat timejoins the question
at what positionas answerable not only experimentally, but also within the realm of the
guantum mechanical formalism.

In special relativity time is obviously®, and it seems the questiabwhat timewould be
addressed in relativistic quantum mechanics in a simple and direct way: explicit covariance
should rule the presence gf along with the space componentsto form a Minkowski
space four-vectog*. There should be no telling difference between the time and the space
components ofy, mainly taking into account that—in contrast with the non-relativistic
case—they get entangled by Lorentz transformations. One could be led to believe in
the existence of a spacetime position operator, a four-vector, whose components should
transform covariantly under the Lorentz group. This object should address simultaneously
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the two questionsvhenand where seemingly unrelated in the non-relativistic case. It is
well known that this object has never been constructed. In the instant form of dynamics, i.e.
referring the operators to their values at some instant of time, one can employ a three-vector
operator—the position operator [2]—to answer the questibere This operator not only

lacks explicit covariance, it also lacks a time component. The cause of these deficiencies
can be traced back [3] to the reparametrization invariance of the action of the relativistic
particle

5=mfdr@ (1)

which translates into evolution (along generated by a HamiltoniaH = p? — m? = 0.

Since the Hamiltonian is constrained to vanish, thevolution is a gauge transformation.

In the canonical approach one chooses a solution to the constraint, i.e. by pfttiag
Vp?+m?2, and ‘fixes the gauge’ by setting the evolution parameter to be the physical
time. A priori there is no room left for the questiomhenas there is no freedom left

for a time operator differing from the time parametgt. This is a bonus from another
point of view: demotingg® to the role of a parameter one evades the difficulty of a
Hamiltonian unbounded from below in the same way as in the non-relativistic case. The
lack of positivity of the densityi® of the solutions of the Klein—-Gordon equation also plays

a role here. It brings about particle—antiparticle pairs, etc, and the untenability of the one-
particle interpretation. From here on, the true variables are field configurations, to whom
¢°, along with the space coordinatg§, are mere parameters. However, the case of the
relativistic particle we are analysing here is of intrinsic interest; it serves to set up the basis
for the particle interpretation of quantum field theory, and also as a guideline to use [4]
in the construction of the quantum formalism of the gravitational field. Analysing issues
of time for the relativistic particle may prove valuable in transforming that formalism in

a theory or, at least, may throw some light on the issues of time in quantum gravity [5].
This paper focuses on the relativistic particle. In section 2 we summarize the results of the
canonical formalism, In section 3 we generalize the treatment of [1] to the free relativistic
particle, section 4 contains the generalization to three space dimensions and section 5 is
devoted to questions of orthogonality and completeness. Finally, in section 6 we discuss
some issues raised by the interpretation of the formalism and some speculations about the
applicability to quantum gravity.

2. Canonical formalism

Here we will focus our attention onto the physical Hilbert spafig; of the positive energy
solutionsy(x) for the Klein—Gordon equation [6], with the understanding that negative
energies will be reinterpreted in terms of antiparticles. In configuration space where the
Klein—-Gordon equation read§] + m?)y (x) = 0, the positive energy solutions are of the
form:

3
b0 = @072 [[dhettsw — 00w = 2032 [0 ety gy
2w (k)

2

with a scalar product:
3k
G0 =i / B (60, — d,6°Y) = / o ()W) 3
w (k)
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wherew (k) = ~/k? + m2. We will follow the conventions of [7] denoting by uppercase
letters the wavefunctions in momentum space, leaving the lower case for configuration space
functions.

To answer the question ‘What is the probability of finding the particle at the poat
time x%?’ with the above scalar product, we need to find a Hermitian position operator and
find its eigenfunctions/,, ,o. Then, the probability amplitude for finding a particleaatat
time x® = ¢ is (¥,,0, ¢), Whereg(q) is the wavefunction giving the state of the particle.
As shown by Newton and Wigner [2] the position operator is

ip

P 202(p)
In our notation,k will representp in momentum space, whil@s and ps will denote
operators, unless specified otherwise by the word ‘classically’, in which case they will
denote classical dynamical variables. The eigenstate of the position operator localized at
the pointz atr =0 is

Waolk) = (21) 92 20 €. ©)

In general, given a particle in the staigk) at+ = 0, the probability amplitude to find it
at the positionz at¢ = 0 is given by

3
(Wy0, 9) = (27) 32 / L &k /20 (k) @ (k). (6)
2w (k)

The components of the position operator are in involution and their commutation
relations with the momenta are canonical

[0'.01=0 [0, p'] =i8" Q)

under rotations and space translatiégpdehaves as a three vector. It also evolves like the
position of a particle should do, namely

Q=iVv (4)

dQ . P
di = |[Vp2+m27 Q] = . (8)
t w(p)
The Heisenberg position operator at timean be obtained by integrating this equation
Q=Q+ 1. ©)
w(p)

We now would invert this equation to get an operator for the time-of-arrival of the relativistic
particle following the proposal of [1]. Before doing this, we have some comments to make
about the Newton—Wigner operator. This has some strange features that have been discussed
in a vast literature to which we cannot do justice here. At least, it is worth recalling that,
by construction, its eigenfunctions lack Lorentz covariance. Also, the localized state in
configuration space/, o(q, 0) is not a delta functiorS(x — g) as in the non-relativistic

case, but extends in space far — q| ~ ©®(/mc), and drops off exponentially only for

large values ofx — ¢g|. In addition, there is still some controversy about the very existence

of a position operator in relativistic quantum mechanics [8]. In spite of all that, we have
chosen this operator as the simplest one that being Hermitian, is associated with the variable
x of configuration space, and possesses the canonical commutation relations of (7) and the
correct time evolution (8). Given another position operator different from (4), the results
of this paper could be applied to it by using the modified version of (4) in the appropriate
places.
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3. Time-of-arrival in one space dimension

The special role played by time has been the source of controversy since the early days
of quantum mechanics. The search for the various time operators and the analysis of the
associated time—energy uncertainty relations has been the subject of a number of works
(see the bibliography in [9]), the outcome of which was that quantum mechanics cannot
accommodate a time-of-arrival operator. This has been refuted recently in [9] where, in
addition, an average value for this quantity is explicitly obtained for one space dimension
in terms of the current density of the particle. This is framed in a wealth of recent works
devoted to the issue of time in quantum mechanics—see [10] and the bibliography contained
therein—with special emphasis on the tunnelling times, a question of fundamental and
practical implications. Here, we are interested in the characterization of the time-of-arrival
as one of the properties of the system under study as in [1], in other words, we need to
go one step further and to obtain an associated operator to be able to analyse and give an
interpretation of this property in the quantum formalism. This is necessary for our results
to be of value for the quantum formalism of the gravitational field where, as said in the
introduction, time has to be considered as a property of the system under study. For the
sake of simplicity and also to connect with the non-relativistic one-dimensional case studied
in [1] we begin by considering the case of one space dimension. Then we can rewrite (9)
as

P,
w(p)
Classically, the time-of-arrivad(X) at the positionQ (1) = X would be trivially given by
inverting this equation

o) =0+ (10)

1(X) = (X - Q)% (11)

where Q is the initial position,X the detector position ang the particle momentum. In
guantum mechanic® and p do not commute, cf (7), and we have an operator ordering

problem when trying to invert (10). What we can say is that the time-of-arrival operator
could be given by the operator

0°%(X) ~ (X — Q)# (12)

where the symbot- is employed to mean equal up to ordering. In the non-relativistic case
studied in [1], there was the same problem. There, the time-of-arrival opdrétor was
given by

T(X)~ (X — Q)% (13)

that was given the Hermitian solution

T(X) ~ —‘f”\/W(—@\/m gr (14)
p p

with the non-relativistic position operat@¥ = id/dp. The relativistic case we are analysing
brings about two modificationsn is replaced byw(p) and 8/dp by the Newton-Wigner
position operator (4). In this case we have

w(p)< ; d ip ) w(p) jpx

el @) 15
dp = 2w%(p) p (13)

Q°(x) =e ¥
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a form that goes to the operatf(X) of [1] in the non-relativistic limit. The eigenfunctions
of this operator

0% (X)W x (k) = TWr x (k) (16)
are given by
Wrx (k) = av/k g @WTRO (17)

where « is a normalization factor. Multiplying by the phase factor éxpnT), these
functions give the eigenfunctions of [1] in the non-relativistic limit. We will not make
distinctions between right4(> 0) and left-moving Kk < 0) particles here, as these have

a meaning for one space dimension only and we want to study the three-dimensional (3D)
case, where opposite directions can be connected continuously.

4. Three space dimensions

A new feature appears in three space dimensions that was not present in the case studied
above. The space of ‘detected’ states is a subspace of the Hilbert Bfpgacef positive

energy solutions to the Klein—Gordon equation. This comes about because in the 3D case
the evolution equations that we have to invert to obtain the time-of-arrival is the set (9) of
three equations depending on a unigue paramet&o be compatible, they have to satisfy

the constraint

C=(Q-X)Ap=0 (18)

where the ‘point-of-arrival’ X plays the role of a parameter and the symboindicates

the exterior product. Classically, these constraints mean that the angular momentum of the
particle isX A p, so thatX is a point in the particle trajectory, or simply that the angular
momentum abouiX is zero. In quantum mechanics there are obstructions to imposing
simultaneous values to different components of the angular momentum. At first sight, the
best one can do is to constrafif and a component of the angular momentum, &3y

to have definite values given frodX A p. However, this is not the case here, as we are
equating the components of the angular momentum to an opekatorp, in such a way

that the constraints form a first-class system. Classically, (18) plays the role of a set of
first-class constraints in the Hamiltonian formalism that we have to quantize following the
method of Dirac. Now, the total Hamiltonian is

H = +/p?+m2+1,C, (29)

where

Ca = Eabc(Q - X)bpc (20)

and theps and Qs are the dynamical variables to become operators after quantization. It
is straightforward to show that

{Caa Cb} = EubcCCv {Caa H} = Eabc)‘bcc' (21)

Therefore, we have a true first-class system, a different one for each ctor

There seems to be additional difficulties in that the eigenvaluds @ind L3 are integer
numbers while the constraint will assign to them a continuous spectrum. Actually, this is
not the case [11] because, even if the constraint can be written in the BosmX A p,
this will not hold as an operator equation, nor the states on which it will be satisfied will be
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eigenstates of neithdr; nor X A p. Now, the detected subspatéfg can be given simply
as that spanned by the functiods® (k) of the form

HE = (WO (k) = e "X W (k, X)) (22)

whereW (k, X) represents an arbitrary function of the modulugecdnd of X. If we now
require invariance under translations, we have to drop the dependencé 0X) on X.
In this case we can say that the Hilbert spatg. is obtained fromH % by a translation
of amountX.

We are now prepared to studd’(X), the time-of-arrival at a poinX in the 3D space.
Classically, it is given by inverting the equation of motion:

0%(X) = “’(” ) (23)

which is a first-class dynamlcal variab{@®(X), C,} = 0. In the Hilbert spacé{(Q the
operator equation of motion has to be rewritten witleplaced by the operat@°(X) and
Q(¢) by the detector’s positiotX’

X-Q- ﬁQ (X) = (24)
It should be an identity, with the operat@® being such as to annihilate the left-hand side.
By a vector product of the above equation pywve obtain the constraints that are already
satisfied in the detected subspace. A scalar produgt bives

2
pX — pQ—ﬁQ(X)—O (25)
Putting
0°%(X) = e PX Q0erX (26)
the previous equation reduces to
_i£+L_7Q0 (27)

dp = 20%(p) w(p)
Observe how, when acting on the detected subspace, (24) reduces effectively to only the
one-dimensional equation (27). One would be tempted to solve it with the ordering chosen
in (15), with eigenfunctions similar to (17). This choice would not do, as the norm of these
states would be badly divergent in three-dimensional space. What we need are eigenstates
with higher negative powers @fthan in (17). This can be achieved by choosing a different
ordering for the operator. Tentatively we put

1 d
0 — N n 2
0 vw(p)pn+l ( d» + sz( ))p w(p) (28)
with this choice we get for the eigenfunction of (26) with eigenvaluéhe expression
1
\I/(X) — (w(k)T—kX)
r k) =52 e (29)

where we have chosen some arbitrary fix€«d We now choose: such that the scalar
product be well behaved

k2(l n)

3
W ¥ = f —zd (’;)W) (k)Wp (k) = (27) " / I (30)

We see that the eigenfunctions are not orthogonal. We will address this problem in the next
section. Now, we focus on the last integral, which strongly suggest the choicel/2.
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In the general case af space dimensions we would chogse= (d — 2)/2, to make the
measure of the integral equal tadFinally, in our case we have:

0° = Jw(p)p¥? (—id + Ip) P4/ w(p)

dp  20%(p)
\I/;,X)(ki) — (27T)_1k_1/2 ei(a)(k)T—kX) (31)

Wiy = @0 / " dwdowm-),
If there is any doubt left in that the right choiceris= 1/2, one can check that this value
gives the unique ordering that makes the operat®Hermitian, (¢, Q%) = (Q%, ¥).

5. Orthonormalization and completeness

The eigenfunctions of (31) are not yet orthogonal. However, the above scalar product is
an appropriate expression for the Marolf's orthogonalization recipe [1]. It is based on the
physical observation that for vanishing momentum the particle either never reaches the
detector, or sits in it forever. To deal with this situation, Marolf proposed a regularization
prescription for the time-of-arrival operator that ‘avoids’ zero-momentum particles. The
procedure to follow is less obvious here than in the 1D non-relativistic case, due to the
more complex structure of the operator. We first present the appropriate prescription for
arbitraryn, returning ton = 1/2 at the end of the calculation, to show that only with this
value does the procedure give orthogonal eigenfunctions in three space dimensions. First,
we rewrite Q° in the momentum representation as

0 ] . 1 d kn+1/2 32
Q - _Iw( )knJrl/Z\/E@ \/E ( )
which we regularize as follows
1 d
0__ _; 2 pn+1/2
0% = —iw (W) iy g KAV FK) (33)
and wheref is the same as in [1]
1/k fork > ¢
flo=1 (34)
€k for k < e.
The eigenfunctionslléx)(k) corresponding to this operator are of the form:
1 ei(Z(k)T—kX) k dk’
U (k) = — Z (k) = / - 35
r (k) 2 k2T ) (k) o) ) (35)
and the orthogonality condition reads
d®k 1 :
(X) (X)y __ -2 Z(k)(T'—T)
S Y ) =(2 —_— e . 36
(wT T ) ( 77:) / Za)(k)f(k) k2n+1 ( )

For the cases = 1/2 one gets

Zmax X ,
WP,y ) = @y / dZe?T =D = 5(1 — T (37)
Z

min
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as the coordinat& goes from—oo to 0 ask goes from 0 toe, and from O toco ask goes
from € to co. Z and T form a pair of ‘conjugate’ variables in the subspaée]%). This
can be seen from (37) and the associated completeness relation

+00

d7 Wi ()W (k) =

/W r (R (k) 21 k2 f (k)

The weird expression on the right-hand side is exactly what is needed to form a completeness
relation in the detected subspace. For any functé® e Hiq

d®k’ oo .
— dr Wi ()W (k) 00 (k') = X (k 39
fzw(k/){/_oo r (R (k) (k") (k) (39)
as should be expected. In addition, using the expressions (33)%a@nd (35) forZ, the
following commutation rule is derived

[0° Z] = —i. (40)

The spectral support of bot@® and Z is the whole real line, so that no difficulties arise
from the Stone—Von Neumann theorem with (40) as would be the case were it to involve
o instead ofZ. Finally, a comment on the relation between the time and the position
operators is in order: the eigenstates@fwith eigenvalueX (5) belong to the detected
subspacéiffg. However, it is not possible to determine simultaneously both the position
(or the momentum) and the time-of-arrival due to the fact that the corresponding operators
do not commute.

8(Z(k) — Z(K)) e ' *=FX — (38)

6. Interpretation

The results obtained so far indicate that the operator formalism associated with the time-of-
arrival at a point works to fit the quantum mechanical rules. Accordingly, one can interpret it
in a novel but standard way as was done on physical grounds in [1] for one space dimension.
Here, we will show that the formalism provides the tools with which to build the quantum
mechanical interpretation to be given to the time-of-arrival operator. In other words, that it
provides the mathematical framework sufficient to define the time-of-arrival properties of the
particle and associate with them definite probabilities. For definiteness, we assume that we
are analysing the time-of-arrival at the poixit First we split the Hilbert spac# of states

into never detected{np and detected subspaces; obviously H = Hp & Hnp. Also,

from the discussion in section 4, we know thdp = HX). This will be the Hilbert space
appropriate to the analysis. IHY we have defined the (regularized) Hermitian operator
0°%(X), whose spectrum i§ e R, the set of observable times-of-arrival at the paiht
Having solved the eigenvalue problem f@P(X), we obtained a complete and orthogonal

set of eigenfunctionsﬁ}x)(k) = (k|T, X) in the momentum representation. From them,

we can define the set of elementary projecl{dﬁé‘”, T € R} where

ny =1, xXy(1, X|. (41)
They generate a Boolean algel##awith the properties
nP=n®  nPnd =sa - rny. (42)

To each elementary projector there corresponds an eVéﬁi & arrival at timeT). Given
any two projectordl, I1" € B the meet §nd) and join ©r) operations are defined as usual

by
AT =07 OvIin=0+10 —nmr (43)
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where the notation corresponding to a finite-dimensional Boole algebra has been displayed
for simplicity. Statements will, in general, be of the for@%X), 71 < T < T), i.e. the
particle arrives afX in the interval {1, T2). Associated with them there will be projectors
built by the joining of elementary projectors of the algebra

T2
n% (1, ) = dr ny® (44)
Ty

with matrix elements
(T, X |01y, )T, X) = 8(T — THO(T» — T)O(T — T). (45)

Finally, the algebra has to provide a decomposition of the identity suitable for the analysis
of the properties of the observable under discussion, i.e.

+00 ¥
ne E/ drm¥ =1 (46)
—0Q0

which is valid inH™® due to (39), with the obvious meaning that an arbitrary statk ¢t
will not escape from detection. When acting on states belonging to Hilbert spaces larger
than 7 the value oflT™® will be smaller than one.

The complement of the statemefitX) (71, T»), i.e. the particle arrives aX at a time
outside the interva{T:, T>) will be given by the projectof1™® — X (7, T). In the case
that the state of the particle belongsH6X) the complement gives simply-1T11%(Ty, ).
The statement that there are states that escape from detection, absolutely when their
projection on the detected subspace vanishes, or partially when they do not belong to
H™ but have a finite projection on it, is given by the projector II®. Finally, joining
this last to the complement, gives the negative statemenfIl® (Ty, T»), i.e. the particle
does not arrive aX in the interval(7y, T>). The fact that the negation and the complement
may differ is a consequence of the incomplete character of the spectral decomposition of the
time-of-arrival operator[{*® < 1). This could be avoided by working insid¢® only,
but this is too small to be of practical interest, consisting only of spherical waves &bout

We can now assign probabilities to the statements represented by the projectors of
the algebraB. Given an arbitrary normalized state of the physical Hilbert space, the
probability (in time) of arriving during the intervalry, T») at the positionX, P{*)(®) is
given by

x) & 2
P&y, (@) = . dr (T, X|®)|%. (47)

An arbitrary stated does not need to be iHp, but in general will have a finite projection
on it. Accordingly, we can define the probability of ever being detecteN dty

+00
PX (@) = / dT (T, X |®)|% (48)
—00
This will be equal to one for normalized states Hp, as can be obtained from (39).
For states not inHp this describes the case of states that classically would never be
detected at the positioX, but quantum mechanically have a—less than one, but finite—
probability for (ever) being detected at that point. Consider for example the ideal situation
in which we place a detector along tlo& axis at X = (x, 0,0), and prepare at = 0 a
Gaussian wave packet centred at the origin, with mean momentum slightly afithgis
(k) = (kogsing, 0, ko cost). We consider the uncertainties in position and momentum to be
such that wave packet and detector are well separatee-4t, and the cone of flight of the
particle(86 ~ Ak/k) misses the detector. Even in this case there will be a small probability
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for the particle ever being detected Xt it is given by PX)(®). The probability of being
detected during the intervall1, T2) will be given by P, (®), while the average value
of the time-of-arrival operator will be

(0%(X)) = [ dTTIT, X[9)7 (49)
[ dT (T, X D)2

This is a conditional average value, i.e. it makes sense only in the case when the particle is
ever detected. Speaking about the value of the time-of-arrival in the other case is a logical
contradiction, undefined mathematically, as in this c@seX |®) = 0.

The question of the time-of-arrival still deserves further clarification in quantum
mechanics. We have outlined the mathematical framework whose existence allows for
the assignment of probabilities to its different statements and for the use of logic to make
inferences. In doing this, we are implicitly considering the existence of measurement devices
(detectors in this case) which will function almost ideally, without introducing serious
disturbances in the experimental results, so that the logical outcomes can be compared
straightforwardly with the actual results. The existence of such detectors goes beyond the
scope of the present work, which only deals with the formalism and its interpretation.
This is a question common to this (distributions in time), and the usual (distributions in
space) formulations of quantum mechanics. Another serious issue, of actual interest for its
practical implications, is the inclusion of interactions in the formalism. For instance, how
will the gravity field of the Earth modify the distribution of times-of-arrival as measured
in the laboratory? This is of interest as there are experiments based on the production
of a time-of-flight spectrum against the force of gravity. Another question is that of the
time-of-arrival at a detector of a particle after traversing a barrier by quantum tunnelling.
There is no classical analogue to this situation. Therefore the method presented here will be
useless to address this problem, which calls for a completely guantum mechanical approach.
There is a long list of pending questions worth further research. Here we turn to one of the
motivations of this work, using the relativistic particle as a guideline to learn about time in
guantum gravity. In principle, it would be plausible to think of the space part of the metric
as playing a role similar to that of the detector position. Then, constraints restricting the
detected Hilbert space as in (18) are likely to appear. Were this the case, the comparison
would be among different possible initial states (of the Universe (?)), and the subject of
comparison the time employed by these states to—or the probability of—'evolve’ [12] to a
definite space metric. All this is highly speculative and the object of further research. First,
the mere existence of a suitable classical scheme from which to derive a time operator in
the general case is not even clear.
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